
Supplementary Material for “Amortized Inference with User Simulations”

A TECHNICAL DETAILS

With this section, we provide technical details of the two network structures utilized in the conditional density estimator
implemented: query–key–value cross-attention (for the encoder network) and Glow (for the conditional INN).

A.1 QKV Cross-Attention

To achieve fixed-size behavior features (�̃�) from multi-trial observations (𝒚) in a permutation-invariant manner, the
authors of BayesFlow suggested the use of a network based on sum-pooling of the MLP outputs of each trial observa-
tion [1]. Our study implemented an encoder network with the recently introduced QKV cross-attention structure [5, 9],
from which we have empirically observed better performance.

QKV cross-attention is a method to extract values from given K–V pairs in accordance with Q. In our setting, each
K–V pair is determined for every trial observation in the given observation set (𝒚), and Q is a fixed-size vector with
learned parameter values. The attention layer measures the score of each K per Q (e.g., the dot-product), and it outputs
the weighted sum of V in line with the scores of the corresponding K. In consequence, irrespective of the number of K–V
pairs (i.e., trials observed), the cross-attention output has the same size as Q (a fixed size). That is, the attention-based
encoder network allows the extraction of fixed-size features (�̃�) from data of variable size (𝒚). Following recent studies’
lead [4, 5], we applied cross-attention and self-attention (which together determine all Q, K, and V from the same
source, in an architecture often called Transformer [9]) in turn for more efficient feature extraction. This attention-based
encoder network is applicable whether or not each trial’s observation set takes the form of simple aggregated metrics
(e.g., completion time) or time-series data with variable length (e.g., behavioral trajectory). For the former case, a K–V
pair for cross-attention can be determined by passing each trial observation to simple MLPs. For the latter case, some
neural networks that handle sequential data (e.g., a recurrent neural network or Transformer) can function to determine
a K–V pair from the time-series data of each trial.

A.2 Glow

We implemented our conditional INN with recently introduced Glow [6] structures. The model enables invertible
transformation based on the affine coupling layer [2]. The affine-coupling-layer-based transformation completes the
following processes.

Suppose a bi-directional transformation between 𝒖 and 𝒗 when given a feature vector �̃�. For forward transformation
𝒖 → 𝒗, 𝒖 is split into halves (𝒖1, 𝒖2); then, the output 𝒗 can be obtained by concatenation of (𝒗1, 𝒗2), where

𝒗1 = 𝒖1 ⊙ exp(NN 1 (𝒖2, �̃�)) + NN 2 (𝒖2, �̃�),

𝒗2 = 𝒖2 ⊙ exp(NN 3 (𝒗1, �̃�)) + NN 4 (𝒗1, �̃�) .

The operator ⊙ denotes element-wise multiplication. The transformation requires four nonlinear mapping functions
(neural networks), NN 1 ∼ NN 4. For each nonlinear NN function, �̃� is inserted as an external input to the neural network
along with 𝒖2 or 𝒗1; thus, the transformation is conditioned on given �̃�. This 𝒖 → 𝒗 transformation has the perfect
inverse operation 𝒗 → 𝒖 (likewise conditioned on given �̃�). One can inversely obtain 𝒖 via concatenation of (𝒖1, 𝒖2),
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Table B1. Hyperparameters for DQN training in Case 1.

Parameter name Value
replay memory size 100000
gamma 0.99
tau 0.001
min. eps 0.05
eps decay 0.99999
grad. clipping 0.5
optimizer Adam
learning-rate schedule cosine annealing with warm restarts [3]

(max. learning rate 0.001)

where

𝒖2 = (𝒗2 − NN 4 (𝒗1, �̃�)) ⊙ exp(−NN 3 (𝒗1, �̃�)),

𝒖1 = (𝒗1 − NN 2 (𝒖2, �̃�)) ⊙ exp(−NN 1 (𝒖2, �̃�)) .

In addition to the coupling layer, the flow step of Glow includes an actnorm layer, responsible for scaling and biasing
each parameter, and a 1 × 1 convolution layer, which handles permutation of parameter orders. Each layer also supports
inverse operation. In summary, one flow step consists of the sequence actnorm–convolution–affine-coupling conditioned
on given �̃�, and it is cheap to compute the bi-directional conversion between input and output. Using about 5–10 flow
(or Glow) steps has been found sufficient to approximate the complex parameter posterior in typical models [8]. Further
implementation details are available from the original Glow paper [6].

B CASE 1: MENU SEARCH

This section provides the implementation details for the control policy of the user simulation model and conditional
density estimator employed for Case 1 (menu search).

B.1 Simulation Model Details

For the control policy of the menu-search model, we implemented a Q-network that receives the model parameter
values, 𝜽 (size = 4) along with the task state (size = 18). The Q-network consisted of three fully connected (FC) layers,
the first two of which each included 64 hidden units with non-linear Rectified Linear Unit (ReLU) activation. The final
layer’s size (i.e., the number of units) was set as the action dimension of the menu-search environment (here, 9). As
for the structure’s inputs, the task state is entered only for the first layer, whereas the given model parameters are
entered for not only the first layer but also the second and the last, by being concatenated into each intermediate output.
That is, the policy model was conditioned on the given model parameters by feature-level concatenation [7]. The total
number of trainable parameters of the policy model was 6.5K. We performed the training by means of a DQN with the
hyperparameters listed in Table B1.

B.2 Density-Estimator Details

For the encoder network, we used a simple MLP composed of four FC layers. The given observation (𝒚) had a size of 4.
Each of the first three layers included 16 units with ReLU activation. This network’s final layer output a 32-D feature
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Table B2. Hyperparameters for density-estimator training in Case 1.

Parameter name Value
grad. clipping 1.0
optimizer Adam
learning-rate schedule cosine annealing with warm restarts [3]

(max. learning rate 0.00001)

Table C1. Hyperparameters for DQN training in Case 2.

Parameter name Value
replay memory size 500000
gamma 0.99
tau 0.0001
min. eps 0.05
eps decay 0.99999
grad. clipping 1.0
optimizer Adam
learning-rate schedule cosine annealing with warm restarts [3]

(max. learning rate 0.001)

vector (�̃�). For the conditional INN, we used five Glow steps, and the total number of trainable parameters of the density
estimator model was 34.5K. The training employed stochastic gradient descents with the hyperparameters in Table B2.

C CASE 2: POINT-AND-CLICK

C.1 Simulation Model Details

For the control policy of the point-and-click model, we implemented a Q-network that receives the model parameter
values (𝜽 ), with a size of 4, along with the task state, of size 11. The Q-network consisted of three (FC) layers, the
first two of which each included 64 hidden units with ReLU activation. The final layer’s size (50) was set as the action
dimension, or 50. In this case too, the task state was entered only for the first layer, whereas the other inputs (the given
model parameters) were entered for the second and last layers through concatenation into each intermediate output
(i.e., via feature-level concatenation). In total, there were 8.6K trainable parameters of the policy model. The training
applied a DQN with the hyperparameters listed in Table D1.

C.2 Density-Estimator Details

For Case 2’s encoder network, we used an attention-based network structure to extract a fixed-sized feature vector (�̃�)
from a multi-trial observation (𝒚). One K–V pair was determined for each trial observation for QKV cross-attention
in the encoder network. Here, each trial observation included a vector composed of aggregated metrics, such as trial
performance (with a size of 12), and a 2-D array consisting of a time-series trajectory (feature dimensions = 5). For
determining the K–V pairs, we processed the aggregated data and trajectory data separately. The aggregated data were
entered into three FC layers with hidden units [64, 64, 24] (i.e., the output size was 24). The trajectory data were fed
to the Perceiver Transformer [5] to be extracted as a vector with a size of 8. After the processing, a 32-D vector was
acquired from each trial observation. This vector was fed to the cross-attention layer as K and V (i.e., one K–V pair
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Fig. C1. The encoder network’s structure in cases 2 and 3. The size of each intermediate output is indicated in parentheses.

Table C2. Hyperparameters for density-estimator training in Case 2.

Parameter name Value
dropout during attentions 0.4
grad. clipping 0.5
optimizer Adam
learning-rate schedule cosine annealing with warm restarts [3]

(max. learning rate 0.0001)

per trial). We implemented the Q system as a 4 × 32 matrix with trainable parameter values. The output of the QKV
cross-attention layer was the same as with Q (i.e., a 4 × 32 matrix); it was fed to an additional self-attention layer. We
repeated the cross-attention plus self-attention processes twice (see Figure C1 for the full process within the encoder
network and the size of the intermediate outputs).

For the conditional INN, five Glow steps were used. The total number of trainable parameters of the density estimator
model was 118K (51.8 K for the encoder network and 66.2K for the conditional INN). We performed the training by
means of stochastic gradient descents, using the hyperparameters presented in Table C2.
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Table D1. Hyperparameters for PPO training in Case 3.

Parameter name Value
gamma 1.00
entropy coeff. 0.01
value func. coeff. 1.0
grad. clipping 0.2
optimizer Adam
learning rate 0.00002

Table D2. Hyperparameters for density-estimator training in Case 3.

Parameter name Value
dropout during attentions 0.2
grad. clipping 1.0
optimizer Adam
learning-rate schedule cosine annealing with warm restarts [3]

(max. learning rate 0.00005)

D CASE 3: TOUCHSCREEN TYPING

D.1 Simulation Model Details

For the control policy of the touchscreen-typing model, we implemented both actor and critic networks that receive the
model parameter values (𝜽 ), size = 3, along with the task state, of size 2. Each network consisted of three FC layers,
where each of the first two included 64 hidden units with ReLU activation and the final layer’s size was set as the action
dimension (size = 3). The task state was entered directly into the first layer. The given model parameters too were
entered for the first layer but after being passed through an additional FC layer (hidden-unit size = 4). There were 736
trainable parameters of the policy model. The training was performed via PPO with the hyperparameters in Table D1.

D.2 Density-Estimator Details

For the encoder network, we used an attention-based network structure to extract a fixed-sized feature vector (�̃�) from
a multi-trial observation (𝒚). In a contrast against Case 2, each trial observation in Case 3 was only a vector consisting
of aggregated metrics (e.g., trial performance) with a size of 5 (i.e., no time-series data were included). Three FC layers
with hidden units [16, 16, 32] were used to determine the K–V pair from each trial observation (i.e., a 32-D vector was
acquired from each trial observation). In other respects, the encoder-network structure was nearly the same as that
implemented for Case 2 (see Figure C1). For the conditional INN, we used five Glow steps. In all, the density-estimator
model had 100.9K trainable parameters (68.1K for the encoder network and 32.8K for the conditional INN). The training
applied stochastic gradient descents with the hyperparameters in Table D2.

E RESULTS FOR DIFFERENT PRIORS (SUBSECTION 8.2)

Table E1 and Table E2 show the effect of different prior settings on inference performance (parameter-recovery and
behavior prediction, respectively) for Case 1. Tables E3 and E4 present the corresponding results for Case 2. We tested
the two experiment conditions Literature-prior and Uniform-prior as described in Subsection 8.2, and both cases yielded
results similar to those with Case 3: Firstly, parameter-recovery performance suffered when the trained density estimator
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Table E1. Parameter-recovery performance (𝑅2 values) with the menu-search model (Case 1), with different prior settings. Δ represents
the value obtained by subtracting the result of the model learned under Literature-prior from the result of that learned under Uniform-
prior, with the results where |Δ | ≥ 0.1 in green or red while those where 0.1 > |Δ | ≥ 0.05 are colored light green or light red.

Inferred
parameter

Evaluated under Uniform-prior Evaluated under Literature-prior

Uniform→
Uniform

Literature→
Uniform Δ

Uniform→
Literature

Literature→
Literature Δ

𝑑fix 0.897 0.880 0.017 0.742 0.744 −0.002

𝑑sel 0.900 0.874 0.026 0.863 0.871 −0.008
𝑝rec 0.771 0.594 0.177 0.806 0.817 −0.011
𝑝sem 0.330 0.171 0.159 0.316 0.332 −0.016

Table E2. Behavior-prediction accuracy, per distances from actual observations, with different prior settings for the menu-search
model (Case 1). For each row, the closest results are in green and the second-closest are in light green.

Behavior
Distance
metric Baseline

Amortized inference

Uniform-
prior

Literature-
prior

Completion time
(with target)

Mean diff. 76.791 76.190 43.597
KLD 0.0741 0.0213 0.0108
MMD 3.4193 0.4858 0.4787

No. of fixations
(with target)

Mean diff. 0.0635 0.0176 0.0018
KLD 0.8681 0.7903 0.7285
MMD 0.3850 0.3651 0.3395

Completion time
(no target)

Mean diff. 65.972 148.184 186.825
KLD 0.1007 0.0188 0.0524
MMD 6.8355 1.0545 0.9976

No. of fixations
(no target)

Mean diff. 0.3397 0.2396 0.0798
KLD 3.9804 1.6368 1.8807
MMD 0.3603 0.3471 0.1288

Table E3. Parameter-recovery performance (𝑅2 values) for the point-and-click model (Case 2) with different prior settings, where Δ
represents the value obtained by subtracting the result of the model learned under Literature-prior from that of the one learned under
Uniform-prior. The results where |Δ | ≥ 0.1 are in green or red, and the results where 0.1 > |Δ | ≥ 0.05 are in a light green or light red.

Inferred
parameter

Evaluated under Uniform-prior Evaluated under Literature-prior

Uniform→
Uniform

Literature→
Uniform Δ

Uniform→
Literature

Literature→
Literature Δ

𝜎𝑣 0.936 0.932 0.004 0.955 0.944 0.011

𝑛𝑣 0.372 0.420 −0.048 0.294 0.384 −0.090
𝑐𝜎 0.622 0.586 0.036 0.446 0.606 −0.160

𝑇h,max 0.873 0.692 0.181 0.916 0.925 −0.009

had to cope with data from the other priors. Secondly, Literature-prior outperformed using the uniform prior by most
behavior-prediction metrics, and Uniform-prior produced performance better than each baseline condition’s result.
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Table E4. Behavior-prediction accuracy with the point-and-click model (Case 2) with different prior settings, expressed via distances
from actual observations. For each row, the closest results are in green and the second-closest ones are in light green.

Behavior
Distance
metric Baseline

Amortized inference

Uniform-
prior

Literature-
prior

Completion time
Mean diff. 0.0110 0.0340 0.0433

KLD 6.5330 5.1014 5.3777
MMD 0.0868 0.1083 0.1041

Click endpoint
(normalized)

Mean diff. 0.5189 0.2936 0.0021
KLD 0.3568 0.2359 0.2012
MMD 0.0334 0.0145 0.0072

Cursor travel
distance

Mean diff. 0.0339 0.0323 0.0302
KLD 16.874 15.108 13.608
MMD 0.0302 0.0257 0.0252

Table E5. Behavior-prediction accuracy with different prior settings, measured via distance from actual observations) with the
touchscreen-typing model (Case 3), with strong priors for parameter inference being associated with more accurate predictions for
empirical data. For each row, the closest results are in green and the second-closest ones are in light green.

Behavior
Distance
metric Baseline

Amortized inference

Uniform-
prior

Literature-
prior

WPM
Mean diff. 6.8432 1.0698 1.7769

KLD 1.8028 0.2371 0.1787
MMD 1.0835 0.0632 0.0376

Error rate
Mean diff. 0.9548 0.6336 0.2327

KLD 1.5111 0.7758 0.4968
MMD 1.3805 1.3112 1.2410

Backspace count
Mean diff. 0.8204 1.9484 2.0648

KLD 0.1328 0.0944 0.1059
MMD 0.1202 0.1819 0.2295

KSPC
Mean diff. 0.0865 0.0339 0.0098

KLD 3.5048 1.6208 0.9203
MMD 0.4665 0.4373 0.4007

F RESULTS FOR POINT VS. DENSITY ESTIMATORS (SUBSECTION 8.3)

Table F1 and Table F2 present a comparison between the point and density estimatorwith regard to inference performance
(parameter recovery and behavior prediction, respectively) for Case 1. Case 2’s corresponding results are presented in
tables F3 and F4. For Case 1, the point estimator was implemented by replacing the conditional INN with an MLP having
two hidden layers of 512 units each. We implemented the point estimator for Case 2 by using an MLP with two hidden
layers, each with 256 units. In both cases, the results were similar to those in Case 3: after fitting of the estimators to
the actual-user dataset at the level of individuals, the two estimator types showed comparable performance, and both
outperformed the baseline.
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Table F1. Parameter-recovery performance (𝑅2 values) with the two estimator types for the menu-search model (Case 1). Δ represents
the value obtained by subtracting the result of the density estimator from the result of the point estimator; there were no results
where |Δ | ≥ 0.05.

Inferred
parameter

Point
estimator

Density
estimator Δ

𝑑fix 0.741 0.744 −0.003

𝑑sel 0.863 0.871 −0.008
𝑝rec 0.832 0.817 0.015
𝑝sem 0.364 0.332 0.032

Table F2. Behavior-prediction accuracy with the two estimator types for the menu-search model (Case 1). For each row, the values
for the results closest to the actual observations are in green and those second-closest are in light green.

Behavior
Distance
metric Baseline

Amortized inference

Point
estimator

Density
estimator

Completion time
(with target)

Mean diff. 76.791 113.329 43.597
KLD 0.0741 0.0024 0.0108
MMD 3.4193 0.4996 0.4787

No. of fixations
(with target)

Mean diff. 0.0635 0.0744 0.0018
KLD 0.8681 0.2952 0.7285
MMD 0.3850 0.2046 0.3395

Completion time
(no target)

Mean diff. 65.972 239.335 186.825
KLD 0.1007 0.0323 0.0524
MMD 6.8355 1.0053 0.9976

No. of fixations
(no target)

Mean diff. 0.3397 0.0553 0.0798
KLD 3.9804 1.0458 1.8807
MMD 0.3603 0.1350 0.1288

Table F3. Parameter-recovery performance (𝑅2 values) for the point-and-click model (Case 2) with the two estimator types. Δ
represents the value obtained by subtracting the result of the density estimator from that of the point estimator; the results where
|Δ | ≥ 0.1 are in green.

Inferred
parameter

Point
estimator

Density
estimator Δ

𝜎𝑣 0.957 0.944 0.013

𝑛𝑣 0.653 0.384 0.269

𝑐𝜎 0.773 0.666 0.107
𝑇h,max 0.933 0.955 −0.022
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Table F5. The two estimator types’ behavior-prediction accuracy (in terms of distance from actual observations) with the touchscreen-
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